This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926090

Thermotropic mesomorphism in penta- and hepta-coordinated metal complexes

Iolinda Aiello^a; Mauro Ghedini^a; Annarita Grisolia^a; Daniela Pucci^a; Oriano Francescangeli^b ^a Centro di Eccellenza CEMIF.CAL - LASCAMM, Unità INSTM della Calabria, Dipartimento di Chimica, Università della Calabria, I-87036 Arcavacata (CS), Italy ^b Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio e Istituto Nazionale per la Fisica della Materia, Università di Ancona, Via Brecce Bianche, I-60131 Ancona, Italy

To cite this Article Aiello, Iolinda , Ghedini, Mauro , Grisolia, Annarita , Pucci, Daniela and Francescangeli, Oriano(2005) 'Thermotropic mesomorphism in penta- and hepta-coordinated metal complexes', Liquid Crystals, 32: 6, 763 – 769 **To link to this Article: DOI:** 10.1080/02678290500139328 **URL:** http://dx.doi.org/10.1080/02678290500139328

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Thermotropic mesomorphism in penta- and hepta-coordinated metal complexes

IOLINDA AIELLO[†], MAURO GHEDINI^{*}[†], ANNARITA GRISOLIA[†], DANIELA PUCCI[†] and ORIANO FRANCESCANGELI[‡]

[†]Centro di Eccellenza CEMIF.CAL - LASCAMM, Unità INSTM della Calabria, Dipartimento di Chimica, Università della Calabria, I-87036 Arcavacata (CS), Italy

Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio e Istituto Nazionale per la Fisica della Materia, Università di Ancona, Via Brecce Bianche, I-60131 Ancona, Italy

(Received 3 August 2004; in final form 6 January 2005; accepted 13 January 2005)

New Ni(II) and UO₂(II) metallomesogens obtained from mesomorphic N,N'-salicyliden(3,3'-diamine-N-methyldipropylamine) ligands containing a pentadentate N₃O₂ chelating cavity and bearing two or four lateral substituents, are isolated and fully characterized. Some of the synthesized nickel and dioxouranium complexes show a SmC mesophase. To the best of our knowledge, these species are the first pentacoordinated Ni(II) and heptacoordinated UO₂(II) metallomesogens to be reported.

1. Introduction

The molecular geometry imposed by a metal coordination sphere can be a useful tool in obtaining mesomorphic species (metallomesogens) with unusual molecular shapes and related physical properties [1]. Nevertheless, excluding the lanthanide species recently reviewed by Binnemans and Görller-Walrand [2], most of the reported liquid crystalline d-block metal complexes exhibit a square planar coordination geometry [1], while those with coordination number (c.n.) exceeding four are limited to a few species of trigonal bipyramidal (TPY), square pyramidal (SPY) and octahedral (O) geometries. Representative examples of these type of metallomesogen are the derivatives containing the fragments Fe(CO)₃, (TPY, [3]), Zn(NO₃)₂ (TPY, [4]), MCl₂ (M=Mn, Ni, Zn; TPY, [5]), VO(IV), $(SPY, [6]), M(CO)_4 (M=Mn, Re; O, [7]) and PtI_2(IV)$ (O, [8]). The influence of an 'odd' metal c.n., on the thermal behaviour in metal complexes is therefore studied here, using mesogenic and pro-mesogenic chelating ligands containing a pentadentate cavity.

Rod-like disubstituted N,N'-salicylidenediaminato nickel, copper and oxovanadium complexes exhibiting rod-like [9] or forked lateral-tailed [10] molecular shapes were recently examined; the nickel complexes where N,N'=1,2-diaminoethane or 1,3-diaminopropane

The ligand N, N'-salicyliden(3, 3'-diaminate-N-methyldipropylamine), CH₃N[(CH₂)₃N=CH(OH)C₆H₄]₂, gives rise to a stable high spin paramagnetic Ni(II) complex in which the metal ion is penta-coordinated in a distorted TPY geometry. The equatorial positions are occupied by the nitrogen atom bearing the CH₃ group and by the two oxygen atoms [11, 12]. In addition, the dioxouranium(VI) ion is known to form hepta-coordinated complexes with both N₂O₃ and N₃O₂ ligands. In these complexes the linear $[O=U=O]^{2+}$ cation is usually found perpendicular to the plane containg the O and N set of donating atoms [13]. Therefore, from the reaction between Ni(II) and UO₂(II) salts and pro-mesogenic ligands containing the N_3O_2 chelating core penta- and hepta-coordinated complexes are expected to be formed. Here we report the synthesis and thermal behaviour of the nickel and dioxouranium complexes obtained from the N,N'-salicylidenediaminates H_2L_{1-4} shown in figure 1.

showed lower transition temperatures and wider mesomorphic ranges. These N,N'-salicylidenediaminate tetradentate N_2O_2 chelating ligands are easily synthesized from the appropriate substituted salicylaldehydes. Therefore, pentadentate ligands similar to the N_3O_2 bonding species arising from 3,3'-diamino-N-methyldipropylamine, $CH_3N[(CH_2)_3NH_2]_2$, have been synthesized and their coordination ability tested against Ni(II) and UO(II) metal ions.

^{*}Corresponding author. Email: m.ghedini@unical.it

Figure 1. Chemical structure and proton numbering scheme for H_2L_{1-4} ligands.

2. Experimental

2.1. General

Infrared spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer equipped for reflectance measurements. ¹H NMR spectra were recorded on a Bruker WH-300 spectrometer in CDCl₃ solutions, with TMS as internal standard. Elemental analyses were performed with a Perkin-Elmer 2400 analyser, and optical observation were made with a Zeiss Axioscope polarizing microscope equipped with a Linkam C0 600 heating stage. Transition temperatures and enthalpies were measured on a Perkin-Elmer DSC-6 differential scanning calorimeter with a heating and cooling rate of 10.0° C min⁻¹ following calibration with indium. The Xray powder diffraction patterns were obtained using a Bruker AXS general area detector diffraction system (D8 Discover with GADDS). Monochromatized CuK_{α} radiation (λ =1.54 Å) impinged on the ~1 mm thick sample, the temperature of which was controlled to $\pm 0.1^{\circ}$ by a hot stage containing electrical resistors.

All chemicals were reagent grade and used as purchased without further purification.

2.2. Synthesis of the H_2L_{1-4} ligands

The compounds 2-hydroxy-5-{[4-(*n*-tetradecyl)phenyl] azo}benzaldehyde (I) [9] and 2-hydroxy-4-(*n*-octadecyloxy)-5-{[4-(n-tetradecyl)phenyl]azo}benzaldehyde (II) [10] were synthesized as previously described. The preparation of 4-dodecyloxybenzoic acid 4-formyl-3-hydroxyphenyl ester (III) and 5-dodecyloxybenzoic acid 4-formyl-3-hydroxyphenyl ester (IV) was accomplished by modifying the reported literature procedures [14]. The elemental analysis data for all the complexes are listed in table 1.

2.2.1. Preparation of H_2L_1 . A solution of N,N'-bis(3-aminopropyl)methylamine (0.09 g, 0.10 ml, 0.59 mmol) and I (0.5 g, 1.18 mmol) in methanol (15 ml) was stirred under reflux for 4 h. The precipitate that formed on cooling to room temperature was filtered and washed

	– Molecular formula	Required (found)/%		
Compound		С	Н	Ν
H ₂ L ₁	$C_{61}H_{91}N_7O_2$	76.76 (76.48)	9.61 (9.64)	10.27 (10.38)
H_2L_2	$C_{97}H_{163}N_7O_4$	78.12 (78.35)	11.02 (11.34)	6.57 (6.87)
H_2L_3	$C_{59}H_{83}N_{3}O_{4}$	73.64 (73.91)	8.69 (8.75)	4.37 (4.28)
H_2L_4	C ₉₇ H ₁₆₃ N ₇ O ₄	73.64 (73.99)	8.69 (8.79)	4.37 (3.98)
UO_2L_1	$C_{61}H_{91}N_7O_4U$	59.93 (59.79)	7.34 (7.48)	8.02 (8.38)
UO_2L_2	$C_{97}H_{161}N_7O_6U$	66.22 (66.54)	9.22 (9.58)	5.57 (5.71)
UO ₂ L ₃	$C_{59}H_{81}N_3O_{10}U$	57.60 (57.29)	6.64 (6.51)	3.42 (3.69)
UO_2L_4	$C_{59}H_{81}N_3O_{10}U$	57.60 (57.92)	6.64 (6.97)	3.42 (3.22)
NiL ₁	$C_{61}H_{89}N_7O_2N_1$	72.46 (72.23)	8.87 (8.75)	9.70 (9.85)
NiL ₂	C ₉₇ H ₁₆₁ N ₇ O ₄ Ni	75.26 (75.54)	10.48 (10.51)	6.33 (6.42)
NiL ₃	$C_{59}H_{81}N_3O_8Ni$	69.54 (69.44)	8.01 (8.10)	4.12 (3.80)
NiL ₄	$C_{59}H_{81}N_3O_8Ni$	69.54 (69.99)	8.01 (8.09)	4.12 (4.22)

Table 1. Elemental analysis for H_2L_{1-4} , UO_2L_{1-2} and NiL_{1-2} compounds.

with ethanol. The crude product was purified by recrystallization from ethanol and then dried in vacuo to a yellow solid; yield 0.51 g (90%). IR (KBr, cm^{-1}) v: 2954-2850 (stretching aliphatic CH), 1635 (stretching C=N), 1604, 1467. ¹H NMR (CDCl₃, ppm) δ : 14.26 (s, 2H, OH), 8.42 (s, 2H, CH=N), 7.95 (dd, 2H, $J_{4,6} = 2.43 \text{ Hz}/J_{3,4} = 8.79 \text{ Hz},$ H⁴), 7.85 (d, 2H, J=2.43 Hz, H⁶), 7.77 (d, 4H, J=8.31 Hz, H^{2',6'}), 7.28 (d, 4H, J=8.31 Hz, $H^{3',5'}$), 7.03 (d, 2H, J=8.79 Hz, H^3), 3.70 (t, 4H, J=6.33 Hz, CH_2^{α}), 2.66 (t, 4H, J=7.32 Hz, Ph–CH₂), 2.48 (t, 4H, J=6.84 Hz, CH₂^{γ}), 2.25 (s, 3H, NCH₃), 1.95-1.05 (m, 52H, aliphatic protons), 0.88 (t, 6H, J=6.36 Hz, CH₃). The thermal behaviour is reported in table 2.

2.2.2. Preparation of H_2L_2 . H_2L_2 was prepared by reacting *N*,*N*-bis(3-aminopropyl)methylamine and **II** in

methanol (reflux, 4h). The crude product was purified by recrystallization from chloroform/ethanol and then dried *in vacuo* to yield an Orange solid; yield 0.45 g (83%). IR (KBr, cm⁻¹) v: 2956–2850 (stretching aliphatic CH), 1642 (stretching C=N), 1603, 1467, 1230 (asymmetric stretching C–O–C). ¹H NMR (CDCl₃, ppm) δ : 14.40 (s, 2H, OH), 8.16 (s, 2H, CH=N), 7.75 (d, 4H, J=8.34 Hz, H^{2′,6′}), 7.63 (s, 2H, H⁶), 7.25 (d, 4H, J=8.34 Hz, H^{3′,5′}), 4.12 (t, 4H, J=6.24 Hz, OCH₂), 3.62 (t, 4H, J=6.34 Hz, CH₂^α), 2.64 (t, 4H, J=7.62 Hz, Ph–CH₂), 2.46 (t, 4H, J=6.24 Hz, CH₂^γ), 2.23 (s, 3H, NCH₃), 1.91–0.85 (m, 128H, aliphatic protons). The thermal behaviour is reported in table 2.

2.2.3. Preparation of H_2L_3 . H_2L_3 was prepared by reacting *N*,*N*-bis(3-aminopropyl)methylamine and III in

Ligand	Transition	$T/^{\circ}\mathrm{C}$	$\Delta H/\mathrm{kJ}\mathrm{mol}^{-1}$
H ₂ L ₁	Cr–Cr′	83.4	
2 1	Cr'–SmA	85.0	64.1 ^a
	SmA–I	96.7	17.2
	I–SmA	62.4	15.2
	SmA–Cr	38.3	16.6
H ₂ L ₂	Hexatic SmX–SmC		
2 2	SmC–I	45.7 ^a	72.3
	I–SmC	43.9	3.7
	SmC-Hexatic SmX	40.1	48.9
H ₂ L ₃	Cr–I	100.0	85.0
2 3	I–SmC	85.7	1.4
	SmC–Cr	72.5	60.9
H ₂ L ₄	Cr–I	88.2	80.5
2 4	I–SmC	74.9	12.5
	SmC-Cr	69.1	46.2

Table 2. Optical and thermal properties of H_2L_{1-4} ligands. Cr=crystal, Sm=smectic, I=isotropic liquid.

^aOnly a broad peak for the two transitions.

methanol (reflux, 4h). The crude product was purified by recrystallization from acetone and then dried in vacuo to give a yellow solid; yield 0.47 g (84%). IR (KBr, cm^{-1}) v: 2923–2852 (stretching aliphatic CH), 1734 (stretching C=O), 1692, 1633 (stretching C=N), 1606, 1266. ¹H NMR (CDCl₃, ppm) δ: 14.01 (s, 2H, OH), 8.33 (s, 2H, CH=N), 8.12 (d, 4H, J=9.15 Hz, $H^{2',6'}$), 7.25 (d, 2H, J=8.55 Hz, H⁶), 6.95 (s, 4H, J=9.15 Hz, H^{3',5'}), 6.79 (d, 2H, J=1.83 Hz, H³), 6.71 (dd, 2H, H⁵), $J_{3,5}=1.83 \text{ Hz}/J_{5,6}=8.55 \text{ Hz},$ 4.03 (t, 4H. $J=6.72 \text{ Hz}, \text{ OCH}_2), 3.64 \text{ (t, 4H, } J=6.72 \text{ Hz}, \text{ CH}_2^{\alpha}),$ 2.45 (t, 4H, J=6.72 Hz, CH_2^{γ}), 2.24 (s, 3H, NCH₃), 1.91-1.26 (m, 44H, aliphatic protons), 0.88 (t, 6H, J=6.72 Hz, CH₃). The thermal behaviour is reported in table 2.

2.2.4. Preparation of H₂L₄. **H**₂L₄ was prepared by treating *N*,*N*-bis(3-aminopropyl)methylamine with **IV** in methanol (reflux, 4h). The crude product was purified by recrystallization from acetone and then dried *in vacuo* to give a yellow solid; yield 0.50 g (88%). **IR** (KBr, cm⁻¹) v: 2921–2852 (stretching aliphatic CH), 1730 (stretching C=O), 1635 (stretching C=N), 1608, 1267. ¹H NMR (CDCl₃, ppm) δ : 13.53 (s, 2H, OH), 8.31 (s, 2H, CH=N), 8.11 (d, 4H, *J*=9.51 Hz, H^{2′,6′}), 7.13–7.09 (m, 4H, H⁴ and H⁶), 7.00–6.93 (m, 6H, H³ and H^{3′,5′}), 4.03 (t, 4H, *J*=6.33 Hz, OCH₂), 3.65 (t, 4H, *J*=6.33 Hz, CH₂[∞]), 2.44 (t, 4H, *J*=7.14 Hz, CH₂[∨]), 2.23 (s, 3H, NCH₃), 1.91–1.27 (m, 44H, aliphatic protons), 0.88 (t, 6H, *J*=6.33 Hz, CH₃). The thermal behaviour is reported in table 2.

2.3. Synthesis of UO_2L_{1-4} and NiL_{1-4} complexes

2.3.1. Preparation of UO_2L_1 . Uranyl acetate dihydrate (0.09 g, 0.21 mmol), dissolved in ethanol (5 ml), was added to a hot solution of H_2L_1 (0.20 g, 0.21 mmol) in ethanol (15 ml). The reaction mixture was stirred at

reflux for 6 h and then cooled to room temperature. The solid product, collected by filtration, was washed with water, then ethanol and recrystallized from chloroform/ methanol to give an orange solid; yield 0.24 g (96%). IR (KBr, cm⁻¹) v: 2924–2853 (stretching aliphatic CH), 1623 (stretching C=N), 1599, 1540, 898 (symmetric stretching UO₂). The thermal behaviour is reported in table 3. ¹H NMR data are unavailable because of the low solubility.

The homologous compounds UO_2L_{2-4} were prepared similarly; again, ¹H NMR data are unavailable because of low solubility. Colours, yields, melting points, IR data and elemental analyses are reported below.

 UO_2L_2 : red-orange solid, yield 0.21 g (87%). IR (KBr, cm⁻¹) v: 2921–2851 (stretching aliphatic CH), 1650 (stretching C=N), 1600, 1466, 1250 (asymmetric stretching C–O–C), 904 (symmetric stretching UO₂). The thermal behaviour is reported in table 3.

 UO_2L_3 : the crude product was recrystallized from chloroform/ethanol to give an orange solid, yield 0.17 g (66%), m.p. 270°C_{dec}. IR (KBr, cm⁻¹) v: 2924–2853 (stretching aliphatic CH), 1733 (stretching C=O), 1644 (stretching C=N), 1591, 1477, 1295, 1255, 894 (symmetric stretching UO₂).

UO₂L₄: the crude product was recrystallized from chloroform/ethanol to give a red-orange solid, yield 0.12 g (46%), m.p.>350°C. IR (KBr, cm⁻¹) v: 2924–2853 (stretching aliphatic CH), 1728 (stretching C=O), 1629 (stretching C=N), 1606, 1483, 1254, 892 (symmetric stretching UO₂).

2.3.2. Preparation of NiL₁. A solution of nickel acetate tetrahydrate (0.05 g, 0.21 mmol) and H_2L_1 (0.20 g, 0.21 mmol) in ethanol (15 ml) was stirred at reflux for 6 h and then cooled to room temperature. The solid was filtered off, washed with water, then ethanol and recrystallized from chloroform/methanol to give a green

Complex	Transition	<i>T</i> /°C	$\Delta H/\mathrm{kJ}\mathrm{mol}^{-1}$	d/Å
UO ₂ L ₁	Cr–SmC SmC–I _{dec}	180.2 300	20.3	39.8
UO ₂ L ₂	Cr–SmC SmC–I I–SmC SmC–Cr	53^{a} 118 ^a 113 ^a 92 ^a		37.6
NiL ₁	Cr–I I–SmC	104.2 74.2	110.8 4.2	39.0
NiL ₂	Cr–SmC SmC–I	41.0 120.6	68.8 <1	42.3

Table 3. Optical and thermal properties of UO_2L_{1-2} and NiL_{1-2} complexes.

^aData from optical microscopy.

solid; yield 0.19 g (88%). IR (KBr, cm⁻¹) v: 2923–2850 (stretching aliphatic CH), 1634 (stretching C=N), 1603, 1475, 1386. The thermal behaviour is reported in table 3. ¹H NMR data are unavailable because the compound is a paramagnetic complex.

The homologous compounds NiL_{2-4} were prepared similarly. Colours, yields, melting points, IR data and elemental analyses are reported below. ¹H NMR data are unavailable because these compounds are paramagnetic complexes.

NiL₂: red solid, yield 0.14 g (70%). IR (KBr, cm⁻¹) v: 2921–2851 (stretching aliphatic CH), 1636 (stretching C=N), 1592, 1240 (asymmetric stretching C–O–C). The thermal behaviour is reported in table 3.

NiL₃: green solid, yield 0.14 g (67%), m.p. 168–171°C. IR (KBr, cm⁻¹) v: 2922–2852 (stretching aliphatic CH), 1726 (stretching C=O), 1633 (stretching C=N), 1603, 1253.

NiL₄: green solid, yield 0.17 g (78%), m.p. 136–140°C. IR (KBr, cm⁻¹) v: 2917–2851 (stretching aliphatic CH), 1726 (stretching C=O), 1639 (stretching C=N), 1607, 1250.

3. Results and discussion

3.1. Synthesis

The preparation of the H_2L_{1-4} ligands is accomplished by the condensation of N,N'-bis(3-aminopropyl)methylamine with the appropriately substituted 2-hydroxybenzaldehydes, I–IV (see §2.2). The H_2L_{1-4} ligands, obtained in good yields (84–90%), are yellow (H_2L_1 ,

- L_1 $M_2 = -N = N C_6 H_4 n C_{14} H_{29}$, $M_2 = -H_2$
- L_2 $MX = -N = N C_6 H_4 n C_{14} H_{29}$, $MY = -OC_{18} H_{37}$
- L_3 $m\chi m = -H$, $m\gamma m = -OCO-C_6H_4-OC_{12}H_{25}$
- $L_4 \quad \text{max} = -OCO C_6 H_4 OC_{12} H_{25}, \quad \text{max} = -H_4$

Figure 2. Chemical structure of $UO_2L_{1\!-\!4}$ and $NiL_{1\!-\!4}$ complexes.

 H_2L_{3-4}) and orange (H_2L_2) solids. Analytical data (IR, ¹H NMR spectra and elemental analyses) are consistent with the expected H_2L_{1-4} stoichiometry.

The H_2L_{1-4} chelating species reacted with UO₂(II) or Ni(II) salts leading to the metal derivatives UO₂L₁₋₄ and NiL₁₋₄ (see figure 2) whose purity was confirmed by elemental analyses (table 1). The new complexes were characterized by IR spectroscopy, but ¹H NMR spectra were unavailable because of the low solubility of UO₂L₁₋₄ and the paramagnetic nature of the high spin NiL₁₋₄ complexes. Interestingly, the IR spectra of UO₂(II)-containing species showed a typical band of medium intensity in the 895–910 cm⁻¹ region, which can be attributed to the symmetric stretching of the UO₂(II) group [11].

The coordination geometry adopted by the UO₂(II) and Ni(II) cations can be predicted from that of analogous complexes reported in the literature. In particular, with the UO₂L₁₋₄ complexes a heptacoordination can be supposed, where the dioxouranium rod is probably oriented perpendicular to the plane in which the N₃O₂ set of donating atoms lies [13]. On the other hand, for the paramagnetic high spin NiL₁₋₄ complexes, due to the chelating nature of the N₃O₂ cavity, the Ni(II) centre is penta-coordinated adopting a TPY geometry with the equatorial positions occupied by the CH₃-bonded nitrogen atom and the two oxygen atoms [12].

3.2. Mesomorphism

The phase sequence, transition temperatures and enthalpy changes of the synthesized species were studied using polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD). These results for both the ligands and complexes are summarized in tables 2 and 3, respectively. The azo-containing ligands H_2L_1 and H_2L_2 are found to be thermotropic smectogens. In particular, they exhibited the typical focal conic with myelinic figures (H_2L_1 : SmA) and schlieren (H_2L_2 : SmC) texture, respectively [15].

XRD studies of H_2L_2 showed that the phase at room temperature is not crystalline. In fact, the diffraction pattern showed a series of four sharp Bragg peaks in the small angle region, with spacings in the ratio 1:2:3:4, accompanied by a relatively sharp peak in the wide angle region, centred at a scattering angle 2θ of about 20.9°. The small angle Bragg peaks (fundamental and first three harmonics) are diagnostic of a well organized layered structure characterized by a periodicity *d* of 61 Å. The full width at half maximum of the wide angle peak is intermediate between that characteristic of long range positional ordering and that typical of the short range liquid like positional ordering of the disordered Sm phases (A or C), corresponding to a correlation length of about 100 Å. This pattern is consistent with the hexatic SmB phase, or its tilted versions SmF and SmI, which are characterized by the onset of a certain degree of order within the layers, whereas positional coupling between the layers remains extremely weak or totally absent.

In this mesophase the lateral packing of the molecules is locally hexagonal (implying long axis rotation) and the lattice parameter a is 4.9 Å. This positional order is not long range and disappears over distances of the order of the correlation length. However, the hexatic phase displays long range lattice orientational order. Based only on the powder XRD and without knowledge of the molecular length (no experimental data are available to estimate the actual length of the forked H_2L_2 molecule), it is not possible to discriminate between the orthogonal (SmB) and the tilted (SmF of SmI) nature of the hexatic mesophase. Moreover, a distinction between these different phases through POM observations was not possible, since H₂L₂ showed a very fine schlieren-like texture, characteristic of all the hexatic phases, even if less common than the mosaic variant [15]. However, since the usual phase transition sequence already reported [16–18] is such that the tilted SmI and SmF appear before the SmC phase while the orthogonal SmB is associated with the SmA phase, it seems possible to deduce, from the phase transition sequence observed in H_2L_2 , the tilted nature of the hexatic mesophase.

Both the H_2L_3 and H_2L_4 ligands exhibited a monotropic SmC phase, stable over a temperature range of some 10°C (table 2).

Coordination compounds containing the azo moiety, UO_2L_1 , UO_2L_2 , NiL_1 and NiL_2 , displayed liquid crystalline properties (table 3), whereas none of the complexes containing H_2L_3 and H_2L_4 ligands (i.e. UO_2L_3 , UO_2L_4 , NiL_3 and NiL_4) were mesomorphic. All the mesogenic metal complexes showed a SmC phase, characterized by a schlieren texture and, upon cooling from the isotropic liquids, all retained the mesophase texture giving a glassy solid stable up to one month. The nature of the SmC phase, identified by POM, was successfully confirmed by XRD.

4. Conclusions

A new series of ligands containing a N_3O_2 chelating cavity (H_2L_{1-4}) has been synthesized, all show smectic mesophases. A comparison of the mesomorphic behaviour between the ligands is not significant, considering that the substituents on the salycilidene phenyl rings are different in the series (figure 1). However, it should be noted that only the ligands bearing the azo moieties $(H_2L_1 \text{ and } H_2L_2)$ showed enantiotropic mesomorphism. As expected, the transition temperatures are found to be sensitive to the number and position of the alkyl chains, and strongly decrease for H_2L_2 , in which two lateral tails are present. Moreover, when the salycilidene phenyl rings are substituted with ester moieties, the corresponding ligands H_2L_3 and H_2L_4 display only monotropic mesomorphism with clearing temperatures (T_c) correlated to the position of the ester substituents; T_c $(H_2L_4) < T_c$ (H_2L_3) .

Finally, with regards to the central core, no comparisons are possible with the previously reported bissalicylidenediamino ligands bearing the same peripheral groups [9, 10] and containing a N(CH₂)_nN (n=2 or 3) bridge, because of the extremely different geometry of the group connecting the two salycilidene fragments, N(CH₂)₃N(CH₃)N(CH₂)₃N present in the new ligands, to H₂L₁ and H₂L₂.

The reaction of H_2L_{1-4} with UO₂(II) or Ni(II) salts resulted in the corresponding metal derivatives UO₂L₁₋₄ and NiL₁₋₄. The expected molecular geometry around the UO₂²⁺ cation is such that the *c.n.* is seven and the dioxouranium rod is perpendicular to the plane on which all the metal-bonded N₃O₂ atoms lie. By contrast, the nickel complexes are penta-coordinated high spin paramagnetic species, wherein the N(CH₂)₃N(CH₃) N(CH₂)₃N bridge probably spans equatorial and axial positions in a distorted TPY coordination polyhedron.

Interestingly, the results of the present investigation proved that the strong pro-mesogenic capacity of the phenylazo-containing peripheral tails in salicylidenediaminate ligands is able to induce mesomorphic behaviour in metal complexes regardeless of the Ni(II) coordination geometry. Indeed, upon complexation of the new H_2L_{1-4} ligands, the mesomorphism is stabilized for derivatives bearing azo substitutents (H_2L_{1-2}), all showing the SmC phase, regardless of the nature of the metallic centre, while for the H_2L_{3-4} ligands the presence of the ester groups, independent of the molecular shape of the resulting complex (roughly bent for H_2L_3 or linear for H_2L_4) prevented the formation of metallomesogenic species.

In conclusion, it may be noted that, to the best of our knowledge, these newly synthesized species are the first hepta-coordinated $UO_2(II)$ and penta-coordinated paramegnetic Ni(II) metallomesogens reported to date.

Acknowledgements

This work was partly supported by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) through the INSTM-FIRB and Centro di Eccellenza CEMIF.CAL grants.

768

References

- B. Donnio, D. Guillon, R. Deschenaux, D.W. Bruce. Comprehensive Coordination Chemistry II, Vol. 6, J.A. McCleverty, T.J. Meyer (Eds), Elsevier, Oxford (2003).
- [2] K. Binnemans, C. Görller-Walrand. Chem. Rev., 102, 2303 (2002).
- [3] L. Ziminski, J. Malthête. Chem. Commun., 1495 (1990).
- [4] E. Terazzi, J.-M. Bénech, J.-P. Rivera, G. Bernardinelli, B. Donnio, D. Guillon, C. Piguet. *Dalton Trans.*, 769 (2003).
- [5] F. Morale, R.W. Date, D. Guillon, D.W. Bruce, R.L. Finn, C. Wilson, A.J. Blake, M. Schroder, B. Donnio. *Chem. Eur. J.*, 9, 2484 (2003).
- [6] A.G. Serrette, T.M. Swager. J. Am. chem. Soc., 115, 8879 (1993).
- [7] R.W. Date, E.F. Iglesias, K.E. Rowe, J.M. Elliott, D.W. Bruce. *Dalton Trans.*, 1914 (2003).
- [8] M. Ghedini, D. Pucci, A. Crispini, G. Barberio. Organometallics, 18, 2116 (1999).

- [9] I. Aiello, M. Ghedini, F. Neve, D. Pucci. *Chem. Mater.*, 9, 2107 (1997).
- [10] I. Aiello, M. Ghedini, M. la Deda, D. Pucci, O. Francescangeli. *Eur. J. inorg. Chem.*, 1367 (1999).
- [11] L. Sacconi, I. Bertini. J. Am. chem. Soc., 88, 5180 (1966).
- [12] M. Di Varia, P.L. Orioli, L. Sacconi. Inorg. Chem., 10, 553 (1971).
- [13] U. Cesellato, M. Vidali, P.A. Vigato. *Inorg. Chim. Acta*, 77, 18 (1976).
- [14] J.-P. Bayle, E. Bui, F. Perez, J. Courtieu. Bull. Soc. chim. Fr., 4, 532 (1989).
- [15] I. Dierking. *Textures of Liquid Crystals*. Wiley-VCH, Weinheim (2003).
- [16] D. Rogez, J.L. Gallani, P. Martinoty. Phys. Rev. Lett., 80, 1256 (1998).
- [17] C. Nagabhushan, G.G. Nair, B.R. Ratna, R. Shashidar, J.W. Goodby. *Liq. Cryst.*, **3**, 175 (1988).
- [18] C.C. Huang, G. Nounesis, R. Geer, J.W. Goodby, D. Guillon. *Phys. Rev. A, rapid Commun.*, **39**, 3741 (1989).